If it's not what You are looking for type in the equation solver your own equation and let us solve it.
d^2=4^2+5^2
We move all terms to the left:
d^2-(4^2+5^2)=0
We add all the numbers together, and all the variables
d^2-41=0
a = 1; b = 0; c = -41;
Δ = b2-4ac
Δ = 02-4·1·(-41)
Δ = 164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{164}=\sqrt{4*41}=\sqrt{4}*\sqrt{41}=2\sqrt{41}$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{41}}{2*1}=\frac{0-2\sqrt{41}}{2} =-\frac{2\sqrt{41}}{2} =-\sqrt{41} $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{41}}{2*1}=\frac{0+2\sqrt{41}}{2} =\frac{2\sqrt{41}}{2} =\sqrt{41} $
| 15+1x=10+1.50x | | 2x-3/5=6/2 | | 13+5m=62 | | 3x+5x+7=-1 | | 15x-1=10x-1.50 | | 2.5x-3=3x-2 | | 4(a-2)=8a(4a8) | | 3(x+4)-2x=26 | | 3x-4=6x+2+2x | | 4(x+1)=-3(2-x) | | 5x+8=-4-7x | | 7/x=x/343 | | 37.5=8.25x | | 2(x-7)+5=2x-8 | | 15x+1=10x+1.50 | | y-1.25=6.75 | | -5(3x-9)=2(x-4)-49 | | 7n^2-10=25 | | 2(3)-y=-2 | | -7*6x=x+8 | | 19-19n=-20n | | y-$1.25=$6.75 | | w+27=100 | | 15.25-3.8x=25.75+2.2x | | 10.25+10.25=5.15m | | 7-5n-2n=14 | | 4+3(2y+12)=100 | | 2.04-15.7b=13.38-13.6b | | 14x-2-8x=16 | | 35.95-7.1x=-4.1(x-3.5) | | 9-9j-1=-10-7j | | 5(x+3)-2=48 |